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Introduction 
We believe 3D information visualization has the power to unlock new levels of 
productivity in the monitoring and control of complex processes. Our goal is to provide 
visual methods to allow for rapid human insight into systems consisting of thousands to 
millions of parameters. We explore this hypothesis in two complex domains: NASA 
program management and NASA International Space Station (ISS) spacecraft computer 
operations. We seek to extend a common form of visualization called the strip chart from 
2D to 3D. A strip chart can display the time series progression of a parameter and allows 
for trends and events to be identified. Strip charts can be overlayed when multiple 
parameters need to visualized in order to correlate their events. When many parameters 
are involved, the direct overlaying of strip charts can become confusing and may not 
fully utilize the graphing area to convey the relationships between the parameters. 
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We provide a solution to this problem by generating 3D surfaces from parameterized 
strip charts. The 3D surface utilizes significantly more screen area to illustrate the 
differences in the parameters and the overlayed strip charts, and it can rapidly be scanned 
by humans to gain insight. The selection of the third dimension must be a parallel or 
parameterized homogenous resource in the target domain, defined using a finite, ordered, 
enumerated type, and not a heterogeneous type. We demonstrate our concepts with 
examples from the NASA program management domain (assessing the state of many 
plans) and the computers of the ISS (assessing the state of many computers). We identify 
2D strip charts in each domain and show how to construct the corresponding 3D surfaces. 
The user can navigate the surface, zooming in on regions of interest, setting a mark and 
drilling down to source documents from which the data points have been derived. We 
close by discussing design issues, related work, and implementation challenges. 

Information Flow Challenges in Complex Systems 
Behind complex systems as diverse as NASA program and spacecraft management is a 
pyramid of information. This information pyramid exists so that humans and machines 
responsible for determining and controlling the state of complex systems will not be 
overwhelmed by the numerous lower-level details. On the other hand, these details are 
important, for without the lower-level information, higher management is more likely to 
making d o n n e d  decisions. For instance, accident reports from the NIAT[2] and 
CAIB[3] report cited lack of information flow as a significant factor in the failure of both 
Space Shuttle and Mars spacecraft. In addition, as mission controllers of ISS and future 
missions start to rely on fewer people to monitor and control more subsystems (e.g. 
spacecraft built in stages) {4], a need will grow for tools that provide a systems wide view 
and as well as the relevant details. 

For NASA program management, information rises through a managerial hierarchy, 
progressively concerned with strategic issues over timescales of quarters and fiscal years, 
rather than tactical issues occurring over timescales of days to weeks. Similarly, in the 
NASA spacecraft operation domain, the information concerning the spacecraft operation 
rises through a hierarchy of data processing, from the onboard computers and astronauts 
to ground computers and mission controllers to the spacecraft operations head. In the 
program management domain, a lack of understanding of root causes for meeting andor 
slipping milestones might result in incorrect funding decisions. In the spacecraft 
operation domain, arisk for incorrect spacecraft operation decisions exists when the root - . . - 

causes and ramifications for low-level events are not understood. 
. 

Therein lies our challenge, providing decision makers with a high-level view that will not 
flood them with details, but at the same time, allowing them access to the details in case 
they need the data. These constraints conflict. Our solution is a derivative of the ancient 
saying, “A picture is worth a thousand words.’’ In our case, a 3D surface is worth ten 
thousand data points. Presenting ten thousand words to the user map will swamp the user, 
but providing a single picture enables the user to scan, for a high-level view, and to 
search and drill down for relevant changing details 



I 
~ , 
I 

From Strip Charts to Surfaces 
Strip charts are a common method for displaying data over time. By plotting data over 
time, trends and events can be identified. Overlaying strip charts is a way for discovering 
when events on multiple strip charts correlate. Below are a few examples for displaying 
3D strip chart data over time. In Figure 1, Methods 1-4 demonstrate the use of graphing 
3D strip chart data. None of the methods connects the strip chart elements to create a 
single strip chart surface. That's because to construct a single 3D surface from strip 
charts, first an order of the strip charts must be defined. 

Method 1 Method 2 Method 3 Method 4 
Figure 1 A survey of four 3D methods for visualizing strip chart data.[tS] 
By introducing an order among strip chart elements, an extruded surface connects values 
of strip charts at points in time. The third dimension is often a discrete enumerated type 
over which an ordering relationship can be defined 
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Figure 3 Overlayed Strip charts Figure 2 Strip-chart surface. 
For example in Figure 3, four 
representative parameterized strip charts are overlayed in 2D where in the third quarter 
all of the signals have a maximum. In Figure 2, given a domain-specific method of 
ordering the same four strip charts are displayed as a set of surfaces, where the third 
quatter-maxiinaare can also be observed. Now the surface CGI be used to add fourth and 
fifth dimensions for color and texture. This approach to surface generation is useful if the 
strip charts are of homogenous type (e.g. set of pressures, set of temperatures, set of 
pldmilestone Technology Readiness Levels (TRLs)[ I]. set of processor fi-ame counts). 
The surface may lose its semantics if the types are heterogeneous (e.g. pressures and 
temperatures). 

By transitioning from an overlayed strip chart 2D visualization to a 3D strip chart surface, 
we have increased the portion of the display that is related to the content, namely the 
comparisons of the quantities over time. For example, in Figure 3, where we show the 
overlayed strip charts, the contendfi-me ratio (ratio of full plotting area to that used to 
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display content) is much less than the content/fiame ratio for the surface in Figure 2. In 
addition we increase the data density of the visualizations when we use the surface to 
represent parameters that are mapped to color and texture. 

NASA Strip Charts 
We illustrate strip charts for both the NASA program and spacecraft management 
domains and proceed to develop surfaces fiom the strip charts. 

For program management monitoring and 
control, parameters measured over time 
could include funding levels, TRL[l], risk 
level, and status information. In the NASA 
program management domain, the TRL 
levels of a single program plan can be 
plotted as TRL vs. time over the lifetime of 
the three-year plan (Figure 4). The TRL 
parameter is a very important parameter by 
which the maturity of NASA technology is 
measured [ 11. The change in TRL over time 
is a strong indicator of whether technology 
research and development is proceeding 
according to plan. 

For spacecrafi monitoring and control in the 
ISS Command and Data Handling (CDH) 
computer domain, monitored parameters 
could include the fiame count heartbeat fiom 
the onboard computers[5], as well as the 
flow of information through the computer 
buses and memory. In the NASA spacecraft 
management domain, we model the frame 
count of single computer onboard ISS as 
frame count vs. time (Figure 5) ,  each saw- 
tooth cycle requiring ten seconds. The frame 
count parameter is the measure of the 
“heartbeat” parameter whjch each ISS 
computer is required to have for nominal 
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Figure 4 TRL Strip chart <time, TRL> 
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Figure 5 Frame count Strip chart : <time, 
Frame count> . .. 

operations. Other parameters are program state and an onboard global shared memory 
called the Current Value Table (CVT)[9]. 

The TRL Surface - For NASA Program Management 
For the NASA program management domain, we have selected the plans parameter as 
the third dimension for the construction of the TRL surface. Together with the strip chart 
axes of time and TRL (Figure 4), we can define our 3D space by introducing the plans 
axis. We map each 2D data point <time, T R D  to 3D data points of the form <time, 
plan, TRL> (Figure 7 and Figure 6). The TRL surface is then constructed by defining a 
gnd over the set of 3D data points (see Implementation section). The grid is constructed 



from line segments in both the plans and time dimensions. The line segments in the time 
dimension correspond to the original strip charts which model how a single plan’s TRL 
changes over time (Figure 4). While the line segments i? the plans dimension model the 
TRL state of all plans at a point in time. The surface generated can be seen in Figure 6. 
Methods for choosing the order of the strip chart’s slices along the plans dimension rely 
on domain specific information. For the TRL surface in Figure 6, the order of the plans 
has been defmed by the Level 2 AVsP plan[6]. A Level 2 plan is made up of a set of 
Level 3 plans such that the Level 3 milestones are “rolled-up” to define Level 2 
milestones. The values in the plans dimension for the AVsP plan are discrete, finite, and 
enumerated: 2.1.1, 2.1.2, 2.1.3, and 2.1.4. The rollup relationships in the Level 2 plan 
provide the dependencies to order the Level 3 plans. The upward slope of the surface 
over time indicates that the Level 2 plan expects the milestones of the Level 3 plan to 
increase in TRL as time passes. The color of the surface indicates the amount of funds 
spent at each point in time. In fact, the slope increases front-to-back through the time 
dimension as well as left-to-right through the plans dimension. The fiont-to-back 
increase is due to the passage of time. The right-to-left increase is attributed to milestones 
in a later plan being dependent upon milestones in earlier plans. 

Figure 7 TFU 3D Axes. Figure 6 TRL Surface: <time. ulan. TRL> 

The TRL surfaces provide a way to quickly recognize trends in large data sets by 
mapping surface height change to changes in plan TRL level, and color saturation change 
to changes in plan funding level. We believe that by scarining the surface, it will rapidly 
convey information to the program manager concerning the strategy for maturing and 
monitoring technology as well as provide, through data dependencies, an entry point to 
source material. 
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Many extensions to the TRL surface are required to increase its utility. The TRL surface 
does not reflect the reality of the facts on the ground. The TRL surface must incorporate 
realtime information in the form of monthly and quarterly status update information in 
order that the traditional red, yellow, green status indicators can be compared against plan 
expected progress. (e.g. [7]). The color and texture of the TRL surface will be used to 
incorporate this knowledge and will allow comparison of how well the research and 
development plan wadis able to achieve the actual TRL levels. In addition, once the 
dependency mappings are constructed between the TRL surface and source documents, 



the user can navigate the TRL surface to proiect plans and access to monthly and 
quarterly reports when more detailed knowledge is required. 

The Frame Count Surface - For ISS CDH FDlR 
For the NASA spacecraft domain, we have selected the processors parameter as the third 
dimension for the construction of the frame count surface. Together with the strip chart 
axes of time and frame count (Figure 5), we can defme OUT 3D space by the processors 
axis. We map each 2D data point <time, frame count>, to 3D data points of the form 
<time, processor, frame count> (Figure 9 and Figure 8). The TRL surface is then 
constructed by defining a grid over the set of 3D data points. The grid is constructed from 
line segments in both the processor and time dimensions. The line sepents  in the time 
dimension correspond to the original strip charts which model how a single processor’s 
frame count changes over time (Figure 5). While the line segments in the processors 
dimension model the frame count state of all processors at a point in time. The surface 
generated can be seen in Figure 8. 

frame 

Figure 9 Frame count 3D Axes. Figure 8 Frame count Surface: <time, CPU, frame 
count> 

The saw-tooth nature of the surface over time indicates that the processors are operating 
in a nominal manner. The change in the sawtooth pattern is caused by the absence of 
telemetry due to a dropout in the data for all of the processors. The root cause for such a 
dropout could be a variety of software and hardware components in the information train 
from onboard processor to ground-based telemetry storage and access[ lo]. Over 1000 
data points are used to represent the surface. We will extend the frame count surface to 
utilize color to reflect processor status a d  other information. In addition, by annotating 
the surface with dependencv information the user can navigate to source information 
related to the state of each processor’s operation and design. - 

Methods to choose the order of the strip charts slices along the processors dimension 
must rely upon information specific to ISS CDH domain. For the frame count surface in 
Figure 8, the order of the processors has been selected to correspond to the pyramid 
hierarchy of processors utilized onboard ISS. The hierarchy of the processors identifies 
the physical dependencies that exist between the computers. We have ordered the 
processors according to their location in the ISS three-tiered computer hierarchy. Top 
level computers control the ISS state, mid-tier computers control subsystems, and lower 
tier computers perform the actual sensing and control of ISS. The source of the data is the 



ISS telemetry downlinked to Earth[8] once a second. The values in the processors 
dimension are alpha-numeric parameters known as device process unique identifiers 
(PUIS) [9] 3. For example the frame count PUIS for upper tier CCS-Primary and Backup 
computers have: alpha-numeric values LADPO 1 MDZZO 1 U and LADB02MDZZO 1 U 
respectively. 

Discussion 
To ensure effective use of the 3D surfaces we address several criteria: 1) interactivity 
and navigation - By what principles and how will the user interact with the 3D surfaces 
in order to gain insight and navigate to proper sources? 2) surface features and definition 
- How to define relationships between surface features and the quantities of interest? 
How are they are implemented? 3) “escaping flatland” - How to use surfaces to 
maximize the number of dimensions which can be shown on a flat two dimensional 
screen. Below we address these three areas. 

strip- 
charts 

T dependency screen I 

Figurelo. Information processing flow of a model-viewer-control (MVC) architecture for 
interactive 3D surface visualization. System accepts sets of strip charts as well as dependency 
information and presents 3D views to the user, allows user to drill down to source documents. 

Interactivity and Navigation. We employ the classic model-view-control (MVC) 
methodology (Figure 10). MVC is based on the feedback control principles which 
underlying modem control theory and AI-based methods. In MVC, the user can 
iteratively control the view of a model. For example, the user can fly over the surface or 
fly through the surface to drill down to source documents. In addition, the model and the 
data represented by the model are separate such that both static data as well as the 
dynamic data (e.g. telemetry) can be viewed. The control of the view allows the user 1) 
access to the data 2) manipulation of the model objects and 3) navigation of the views 
1141. 

The iterative process of viewing and controlling the 3D visualization must address what 
Andrew Lippman[l6] has defined are the five criteria of interactivity required to fulfill 
“the give and take of two participants [computer and human]”: 

0 

interruptibility: both the human and computer can intermpt the process 
granularity: what is the smallest unit of control or viewing which supports 
intermptibility 



limited lookahead: avoid pre-computing of surfaces - instead derive from database 
of data and source documents especially when visualizing realtime data. 
graceful degradation: when the system cannot control in a manner desired by the 
user, provide methods to check-point back to previous known good state as well as 
record unsuccessful control requests for analysis by system developers. 
the appearance of infinitude: give “the impression of an infinite database” of 
possible directions for navigation and exploration (e.g. surface of sphere: finite 
surface, infinite extent). 

We implement the interactivity principles in the commands which are available for the 
system. Tufte suggests that “the number of computer commands immediately available 
(more the better), if clearly but minimally displayed” [15]. We partition control of the 
system is into four areas: 1) control of the view 2) set point/mark 3) drilling down to 
sources and 4) preferences. 
0 

0 

0 

0 

Control of the view so the user can navigate the surface to zoom idout on regions of 
interest, pan, rotate, scale and fly through (could also export to VRML which has 
extensive fly through capabilities). 
Set point/mark on regions of data selected for analysis. Users will be able to rubber- 
band regions of the surfaces (Figure 11). Users can select: 1) time slices (show all 
slices @ time) 2) strip chart slices (show a slice 
@ all times) and 3) arbitrary regions of time. In 
the future, the point/marks will be available 
across all displays of the system to ensure 
consistency and parsimony of navigation. 
Drill down to source documents from which the 
data points were derived. The surface is a visual 
metaphor for a set of low level data. The data is 
dependent upon a vast set of more detailed source 
material. For example in the TRL domain, the 
surface represents the Level 2 plan milestones 
made up of a set of Level 3 milestones plans 
which are made up of all the product generated by time 0 
the execution of the plans. While in the fiame Figure 11 3D Set ~ o h d m ~ k  also 3d 
count surface example, the surface represents the surface points to be selected in a 

of groups. coordinated fi-ame count execution of all the Tier 
1 and Tier 2 computers, themselves defining the execution of a vast set of multiple 
programs executing with thousands of variables. We will provide capabilities which 
allow navigation between “a broad overview to the fine structure”[l5]. Navigation 
will be accomplished by encoding underlying dependencies between data points and 
source documents in a domain specific manner. In the implementation section we 
illustrate how to augment the 3D data structures to support dependency information. 
Preferences. User can select colors, axes, orders of strip charts in order to scale, and 
reorder surfaces as necessary. 

Surface Features and Abstract Quantities. In “Discovering Visual Metaphors”[ 1 11 
Gershon and Page state: “Unlike scientific visualization, information visualization 



focuses on information that is often abstract, thus lacking natural and obvious physical 
representation.” We have faced this challenge by limiting our physical representation to 
that of a coloredtextured 3D surface. The dimensions for the 3D coloredtextured surface 
are then defined by developing domain specific mappings between 3D surface features (x, 
y, z, color, texture) and the abstract quantities of interest (e.g. funding levels, TRL[l], 
risk level in the program management domain and status information, frame count, 
program state in the ISS CDH spacecraft domain). 

Encodings 

Tufte also provides guidance in d e h g  how to visualize quantities. He states that 
quantities can be visualized in three different ways: direct labels, encodings and self- 
representing scales. He provides a guide to their use through a strategy of using the 
smallest effective difference: make all visual distinctions as subtle as possible, but still 
clear and effective[ 171 by: 

Direct labels are defined with respect to the grid axes, the 3D points for each 
parameter preserving the “relative difference” between the values of quantity, as 
represented by “relative distances” on the 3D surface. 
Encodings map a quantity to either the color or texture of the surface. When using 
color we do not use multi-color representations as Tufte cautions against (see Sea of 
Japan example[ 17]), instead define a value scale which progresses from light to dark, 
(e.g from light blue to dark blue) and suggests the use of organic colors from nature. 
Self-representing scales identify portions of the visual display which are duplicated 
across the visual field. Since each replicated image corresponds to an instance of 
quantity, the difference in the size of the replicated images allows for comparison of 
the quantities. On our surfaces, the replicated images we utilize are the individual 
strip charts themselves. The slope of the 3D surface highlights the change in the 
shapes of the replicated strip charts and supports comparison of quantities across the 
replicated parallel images. 

In the table below we summarize the quantities in the two NASA domains: 
Self- 
representi l D o m a i n  I Direct Labels 

defied using the methods of visualizing quantities of parameters. 



“Escaping Flatland”[l8]. Tufte observed as many have, that visualizations are trapped 
in two dimensional “flatland” even though the state vector for most visualization domains 
is far greater than two dimensions. Over the ages “flatland” has consisted of the walls 
of the Lascaux Caves, the stone tablet, papyrus, paper and now the computer screen. 
Menard’s 2D visualization of Napolean’s Russian Waterloo demonstrates [ 181 (Figure 13) 
how to model six dimensions without the use of 3D figures. By incorporating Menard’s 
lessons together with the use of perspective drawing to model 3D shapes, we can 
develoD 3D metaDhors which can model even more than Menard’s six dimensions. 

I 
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Figure 13. Menard’s 2D Visualization of Napolean’s 1812 Waterloo - 6 dimensions modeled in 
“flatland”: 1) line color: direction or army @rown/grey: to MOSCOW, black retreat froln Moscow), 2) 
line thickness: quantity of troops, 3’4) line position: (<x,y> location on map of Poland), 5,6) 
temperature @time: vertical drop to temperature on its own scale @time. 

Perspective drawing provides the fust three dimensions for our surfaces. For example in 
Figure 14 two 3D surfaces are defined that analyze presidential election year data from 
1956 and 1960. The three axes are, one continuous axis and two discrete axes: x) party 
identification: [Democrat (strong, weak), Independent, Republican (weak, strong)], y) 
religious identification: [Protestant(strong,weak), Catholic(weak, strong)] , z) democratic 
percentage of the two-party vote: [0..100]. The 3D surfaces show a marked upward trend 
in the maxima of all three dimensions and other changes as well on the surface. These 

--- strong weak weak strong 
lcm- Democrat I Republican Pm- 

Figure 14 3D Surfaces Representing Comparison of Voting patterns between 1956 and 1960 [27]. 

two examples through changes in the shape of the surface, allows the viewer to grasp the 
effect that candidate John F. Kennedy, who became the United States’ first Catholic 
president, had on voter participation. Comparing the two surfaces is easy, comfortable, 
and rapid. 



As we stated earlier perspective drawing provides the first three dimensions. The fourth 
dimension is defined by surface color (e-g. light to dark blue) while surface texture (e.g. 
rough to smooth) provides the fifth dimension. Sixth and higher dimensions are 
represented by the addition of landmarks and terrain features on the landscape surface. 

Mldntght 

Figure 15 3D pollution data overlaved on map of from Santa Barbara to greater Los Angeles 1261 
The use of features on landscapes can be seen Figure 15, a map showing Southern 
California as the foundation surface for visualization of pollution data. Peaks correspond 
to localized levels of nitrogen oxide emissions (many other compounds were also 
visualized) 1261. Similar to Menard with Poiand, the designers have used the physica€ 
geography to define the surface over which features are presented. 

The relationship between 3D surfaces and landscapes is natural. As such, humans enjoy 
the visual landscape metaphor and seek out known landmarks and features which defme 
it. Landscapes[l2] are an organic visual representation for both artificial surfaces (Figure 
14) and natural/geographical landscapes (Figure 15). While the landscape surface 
changes with the underlying data, the user will be able to easily scan and detect the 
changes. Effective visual “scanning” of surfaces depends on the quality of the graphic 
design, which ought to resonate with a user’s psychophysical landscape. For surfaces, 
changes in the surface height, the color saturation or texture can be easily visually 
detected. 

The scanning of the artificial surface representing upwards of six dimensions driven by 
data from a realtime feed is an example of visual data exploration. “Visual data 
exploration seeks to integrate humans in the data exploration process, applying their 
perceptual abilities to the large data sets I?OW available. The basic idea is to present the 
data in some visual form, allowing data analysts to gain insight into it and draw 
conclusions, as well as interact with it. The visual representation of the data reduces the 
cognitive work needed to perform certain tasks.” [13]. Keim outlines the four theorems 
for landscape perception: 
0 “Theorem 1: People seek prospect and refuge as a basic framework for landscape 

visualization” - A visual baseline is learned by humans through learning the 
“nominal” landscape. 
“Theorem 2: A landscape is seen to have character through discovery of the details.” 
-Level of Detail (LOD) is defined through links to data dependencies in addition to 
finer grain views of surface. 

0 



“Theorem 3: Landscapes are viewed as pictorial compositions” - Our first five 
dimensions are devoted to the landscape surface itself, only when we address the 
sixth and higher dimensions do we address pictorial compositions. 
“Theorm 4: Visual images of landscape contribute to geographical awareness through 
cognitive mapping” - When a consistent mapping is defined between the surface 
features and the visualization domain, then metaphorical geographic awareness will 
result. The key is to keep the mapping consistent so that humans can learn it and seek 
refuge in it. 

Implementation 
We use the Java 3D API [20] to implement a model-viewer-controller (MVC)  system for 
3D surface creation and navigation [ 141. We have chosen Java 3D because it is the only 
major, openly available scene graph system. It allows us to dynamically change the 
models in response to changes in the data and user requirements. In addition it can 
compile the scene graph into either DirectX or OpenGL for compiled execution. 

v m  
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Figure 16 Java3D Scene Graph Model [20]. User must specifiy, View, 
Model(Shape3D) and control (Behavior Node). 

The top of the scene graph (Figure 16) defines a virtual universe which is made up of a 
local object which contains the set of branch nodes required of the models and the view. 
Each branch group consists of a transform group which contains a Shape3D node. 

<virtual-universe> : := <locale-objece 
<local-object> ::= <branch_group> + 

<branch_group> : := <transform_group> 
<transform_group> ::= <shape3D> 

Shape3D nodes are made up of a geometry and appearance. For our purposes, an 
appearance is made up of a material, texture, coloring, transparency and rendering. The 
geometry is defined as a geometry arrayhdexed face-set made up of a dictionary of 
coordinates. The face sets are defmed for point, line, triangle and quad arrays (Figure 17). 



cshape3D node> : := <geometry-object>+<appearance> 
<appearance> ::= [material][texture] [coloring][transparency][rendering] 
<geometry-object> ::= <geometry-amay> 
<geometry_array> : := <coordinate>+ 
<geometry-array> : := (point-array 1 line-array I triangle-arraylquad-may) 

-Y -Y Trj=.@eAnraY Q-Y 

Figure 17 Java3D Geometry Array Types[l]. We utilize both quad and triangle array. 

The surface element displays are defined using quad-arrays. Quad arrays are natural for 
parameterized strip charts because the data for each slice is regular. We will also use 
triangle arrays for efficiency and minimality. In Figure 17 we illustrate the different types 
of geometry array that can be created from the point arrays. 

The Shape3D constructs ensure that each vertex has a position, color and texture. To 
create the surfaces we must interpolate the 
values at each vertex to calculate a 
position, color and texture for all 
intermediate points which make up the 
surface. In Figure 18 we illustrate this 
challenge by defining the bi-linear 
interpolation methods for constructing the 
color and texture of point Pn. This will 
allow us to define areas and surfaces 
between the points. Height is taken care of 
by intersection of quad or triangles with 
lines while the color and texture of P n  are 
computed as a function of the four 
surrounding points: 

~ n ( ~ n , t n ) =  C ; = l f , ( ~ i ( ~ z 7 t z ) )  

Figure 18. The color and texture of point P, 
inside of a quad array, defined using bilinear 
interpolation function. 

Each coordinate is defined as a tuple and a set of dependencies. Each 3D tuple has 
attributes for its (x, y, z, color, texture and normal) position. In the program management 
domain, <x,y,z> ::= <time, plan, , while in the ISS spacecraft management domain, 
<x,y,z> ::= <time, processor, frame count>. Color is defined as a range between [0..1], 
and a texture array (u,v) is defined for each texture attribute (e.g, roughness, shininess, 
reflection).: 

<coordinate> : := <tuple> <doc-dependency>* 
<tuple> : := <x> <y> <z> [<color>] [ <texture>] [<normal>] 
<x,y,- ::= <time, plan, TRL> ;;for TRL domain 
<x,y,z> ::= <time, processor, frame count> ;;for frame count domain 



The dependencies between 3D tuples and source documents are defmed by a grammar 
which maps 3D surface features to source documents. The dependencies are used to 
query a document management system such as Netmark[22] for access to source 
documents, or a set of web pages (e.g. ISS ECWA eventsC291). An additional paper 
entitled “Realtime Knowledge Management (RKM) - from an International Space Station 
(ISS) Point of View” E251 addresses the issues of defining the dependency grammar.: 

cdoc-dependencp : := <document identifier> <page>+ 

Conclusion 
“A 3D surface is worth ten thousand data points” 

The use of 3D information visualization methods will help NASA program managers and 
spacecraft mission controllers gain insight into the complex systems they monitor and 
control. These methods will also help in advanced mission control concepts. One such 
concept is Gemini at NASA Johnson Space Center, whereby just a few people, who are 
responsible for all mission control console positions at once, monitor the whole of ISS[4]. 
Recent and past reports analyzing NASA failures highlight the fact that NASA did know 
about the root causes of its failures, but that the relevant information did not flow to 
those people in position of authority to use it. Our task: how to present an abstract view to 
filter unnecessary details and at the same time allow for access to relevant details? These 
two criteria work against each other. 

Our approach is to develop 3D surfaces from ordered homogenous strip charts. We note 
that both program management and spacecraft management domains measure 
performance by monitoring parameters over time in the form of strip charts. The 
timescale of the strip charts can vary through orders of magnitude, whether it is monthly 
status reports, or once a second telemetry downlink. Strip charts are very important 
because they unite symbolic and numeric reasoning systems by time-stamping each type. 
The 3D surface defines an abstract view over the low-level data points in the strip charts. 
This abstract view can be can be rapidly searched by the viewer due in part to the fact 
that 3D surfaces devote a greater percentage of the screen area for parameter differences 
than overlayed 2D strip charts. A drawback of the 3D surfaces to note is that the strip 
charts for the surface must be ordered; if no order can be found the value of the approach 
may be questionable. Still, the 3D surface provides opportunities not available for over- 
layed strip charts by enabling the mapping of additional domain parameters to 3D 
surface color and texture. 

’ 

We utilize Java 3D to model the system using a model-viewer-controller paradigm. We 
have augmented the standard scene graph models with dependencies. The underlying 
dependency mechanism will relate scene graph primitives to document and source 
material indices stored in systems such as Netmark. In related work in the ECS Iron Bird 
Workshop we explore more fully the grammar for document dependencies [25]. In future 
work, we seek to extend the number of dimensions we can model and still maintain 
cognitive coherence for the information consumer. In addition we will develop methods 
to play realtime telemetry and diagnoses through the visualizations. 
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